taichi.math
#
Taichi math module.
The math module supports glsl-style vectors, matrices and functions.
- taichi.math.acos(x)#
Trigonometric inverse cosine, element-wise.
The inverse of cos so that, if y = cos(x), then x = acos(y).
For input x not in the domain [-1, 1], this function returns nan if it’s called in taichi scope, or raises exception if it’s called in python scope.
- Parameters:
x (Union[
primitive_types
,Matrix
]) – A scalar or a matrix with elements in [-1, 1].- Returns:
The inverse cosine of each element in x, in radians and in the closed interval [0, pi]. This is a scalar if x is a scalar.
Example:
>>> from math import pi >>> ti.acos(ti.Matrix([-1.0, 0.0, 1.0])) * 180 / pi [180., 90., 0.]
- taichi.math.asin(x)#
Trigonometric inverse sine, element-wise.
The inverse of sin so that, if y = sin(x), then x = asin(y).
For input x not in the domain [-1, 1], this function returns nan if it’s called in taichi scope, or raises exception if it’s called in python scope.
- Parameters:
x (Union[
primitive_types
,Matrix
]) – A scalar or a matrix with elements in [-1, 1].- Returns:
The inverse sine of each element in x, in radians and in the closed interval [-pi/2, pi/2].
Example:
>>> from math import pi >>> ti.asin(ti.Matrix([-1.0, 0.0, 1.0])) * 180 / pi [-90., 0., 90.]
- taichi.math.atan2(x1, x2)#
Element-wise arc tangent of x1/x2.
- Parameters:
x1 (Union[
primitive_types
,Matrix
]) – y-coordinates.x2 (Union[
primitive_types
,Matrix
]) – x-coordinates.
- Returns:
Angles in radians, in the range [-pi, pi]. This is a scalar if both x1 and x2 are scalars.
Example:
>>> from math import pi >>> @ti.kernel >>> def test(): >>> x = ti.Matrix([-1.0, 1.0, -1.0, 1.0]) >>> y = ti.Matrix([-1.0, -1.0, 1.0, 1.0]) >>> z = ti.atan2(y, x) * 180 / pi >>> print(z) >>> >>> test() [-135.0, -45.0, 135.0, 45.0]
- taichi.math.cconj(z)#
Returns the complex conjugate of a 2d vector.
If z=(x, y) then the conjugate of z is (x, -y).
- taichi.math.cdiv(z1, z2)#
Performs complex division between two 2d vectors.
This is equivalent to the division in the complex number field when z1 and z2 are treated as complex numbers.
Example:
>>> @ti.kernel >>> def test(): >>> z1 = ti.math.vec2(1, 1) >>> z2 = ti.math.vec2(0, 1) >>> ti.math.cdiv(z1, z2) # [1, -1]
- Returns:
the complex division of z1 / z2.
- Return type:
- taichi.math.ceil(x, dtype=None)#
Return the ceiling of the input, element-wise.
The ceil of the scalar x is the smallest integer k, such that k >= x.
- Parameters:
x (Union[
primitive_types
,Matrix
]) – Input scalar or matrix.dtype – (
primitive_types
): the returned type, default to None. If set to None the retuned value will have the same type with x.
- Returns:
The ceiling of each element in x, with return value type dtype.
Example:
>>> @ti.kernel >>> def test(): >>> x = ti.Matrix([3.14, -1.5]) >>> y = ti.ceil(x) >>> print(y) # [4.0, -1.0]
- taichi.math.cexp(z)#
Returns the complex exponential \(e^z\).
z is a 2d vector treated as a complex number.
- Parameters:
z (
vec2
) – The exponent.
Example:
>>> @ti.kernel >>> def test(): >>> z = ti.math.vec2(1, 1) >>> w = ti.math.cexp(z) # [1.468694, 2.287355]
- Returns:
The power \(exp(z)\)
- Return type:
- taichi.math.cinv(z)#
Computes the reciprocal of a complex z.
- Parameters:
z (
vec2
) – The input.
Example:
>>> @ti.kernel >>> def test(): >>> z = ti.math.vec2(1, 1) >>> w = ti.math.cinv(z) # [0.5, -0.5]
- Returns:
The reciprocal of z.
- Return type:
- taichi.math.clamp(x, xmin, xmax)#
Constrain a value to lie between two further values, element-wise. The returned value is computed as min(max(x, xmin), xmax).
The arguments can be scalars or
Matrix
, as long as they can be broadcasted to a common shape.- Parameters:
x (
primitive_types
,Matrix
) – Specify the value to constrain.y (
primitive_types
,Matrix
) – Specify the lower end of the range into which to constrain x.a (
primitive_types
,Matrix
) – Specify the upper end of the range into which to constrain x.
- Returns:
The value of x constrained to the range xmin to xmax.
Example:
>>> v = ti.Vector([0, 0.5, 1.0, 1.5]) >>> ti.math.clamp(v, 0.5, 1.0) [0.500000, 0.500000, 1.000000, 1.000000] >>> x = ti.Matrix([[0, 1], [-2, 2]], ti.f32) >>> y = ti.Matrix([[1, 2], [1, 2]], ti.f32) >>> ti.math.clamp(x, 0.5, y) [[0.500000, 1.000000], [0.500000, 2.000000]]
- taichi.math.clog(z)#
Returns the complex logarithm of z, so that if \(e^w = z\), then \(log(z) = w\).
z is a 2d vector treated as a complex number. The argument of \(w\) lies in the range (-pi, pi].
- Parameters:
z (
vec2
) – The input.
Example:
>>> @ti.kernel >>> def test(): >>> z = ti.math.vec2(1, 1) >>> w = ti.math.clog(z) # [0.346574, 0.785398]
- Returns:
The logarithm of z.
- Return type:
- taichi.math.cmul(z1, z2)#
Performs complex multiplication between two 2d vectors.
This is equivalent to the multiplication in the complex number field when z1 and z2 are treated as complex numbers.
Example:
>>> @ti.kernel >>> def test(): >>> z1 = ti.math.vec2(1, 1) >>> z2 = ti.math.vec2(0, 1) >>> ti.math.cmul(z1, z2) # [-1, 1]
- Returns:
the complex multiplication z1 * z2.
- Return type:
- taichi.math.cos(x)#
Trigonometric cosine, element-wise.
- Parameters:
x (Union[
primitive_types
,Matrix
]) – Angle, in radians.- Returns:
The cosine of each element of x.
Example:
>>> from math import pi >>> x = ti.Matrix([-pi, 0, pi/2.]) >>> ti.cos(x) [-1., 1., 0.]
- taichi.math.cpow(z, n)#
Computes the power of a complex z: \(z^a\).
- Parameters:
z (
vec2
) – The base.a (float) – The exponent.
Example:
>>> @ti.kernel >>> def test(): >>> z = ti.math.vec2(1, 1) >>> w = ti.math.cpow(z) # [-2, 2]
- Returns:
The power \(z^a\).
- Return type:
- taichi.math.cross(x, y)#
Calculate the cross product of two vectors.
The two input vectors must have the same dimension \(d <= 3\).
This function calls the cross method of
Vector
.- Parameters:
- Returns:
The cross product of two vectors.
Example:
>>> x = ti.Vector([1., 0., 0.]) >>> y = ti.Vector([0., 1., 0.]) >>> ti.math.cross(x, y) [0.000000, 0.000000, 1.000000]
- taichi.math.csqrt(z)#
Returns the complex square root of a 2d vector z, so that if w^2=z, then w = csqrt(z).
Among the two square roots of z, if their real parts are non-zero, the one with positive real part is returned. If both their real parts are zero, the one with non-negative imaginary part is returned.
- Parameters:
z (
vec2
) – The input.
Example:
>>> @ti.kernel >>> def test(): >>> z = ti.math.vec2(-1, 0) >>> w = ti.math.csqrt(z) # [0, 1]
- Returns:
The complex square root.
- Return type:
- taichi.math.degrees(x)#
Convert x in radians to degrees, element-wise.
- Parameters:
x (
Matrix
) – The input angle in radians.- Returns:
angle in degrees.
Example:
>>> x = ti.Vector([-pi/2, pi/2]) >>> ti.math.degrees(x) [-90.000000, 90.000000]
- taichi.math.determinant(m)#
Alias for
taichi.Matrix.determinant()
.
- taichi.math.distance(x, y)#
Calculate the distance between two points.
This function is equivalent to the distance function is GLSL.
- Parameters:
x (
primitive_types
,Matrix
) – The first input point.y (
primitive_types
,Matrix
) – The second input point.
- Returns:
The distance between the two points.
Example:
>>> x = ti.Vector([0, 0, 0]) >>> y = ti.Vector([1, 1, 1]) >>> ti.math.distance(x, y) 1.732051
- taichi.math.dot(x, y)#
Calculate the dot product of two vectors.
- Parameters:
- Returns:
The dot product of two vectors.
Example:
>>> x = ti.Vector([1., 1., 0.]) >>> y = ti.Vector([0., 1., 1.]) >>> ti.math.dot(x, y) 1.000000
- taichi.math.e#
The mathematical constant e = 2.718281…. Directly imported from the Python standard library math.
- taichi.math.exp(x)#
Compute the exponential of all elements in x, element-wise.
- Parameters:
x (Union[
primitive_types
,Matrix
]) – Input scalar or matrix.- Returns:
Element-wise exponential of x.
Example:
>>> @ti.kernel >>> def test(): >>> x = ti.Matrix([-1.0, 0.0, 1.0]) >>> y = ti.exp(x) >>> print(y) >>> >>> test() [0.367879, 1.000000, 2.718282]
- taichi.math.eye(n: template())#
Returns the nxn identity matrix.
Alias for
identity()
.
- taichi.math.floor(x, dtype=None)#
Return the floor of the input, element-wise. The floor of the scalar x is the largest integer k, such that k <= x.
- Parameters:
x (Union[
primitive_types
,Matrix
]) – Input scalar or matrix.dtype – (
primitive_types
): the returned type, default to None. If set to None the retuned value will have the same type with x.
- Returns:
The floor of each element in x, with return value type dtype.
- Example::
>>> @ti.kernel >>> def test(): >>> x = ti.Matrix([-1.1, 2.2, 3.]) >>> y = ti.floor(x, ti.f64) >>> print(y) # [-2.000000000000, 2.000000000000, 3.000000000000]
- taichi.math.fract(x)#
Compute the fractional part of the argument, element-wise. It’s equivalent to x - ti.floor(x).
- Parameters:
x (
primitive_types
,Matrix
) – The input value.- Returns:
The fractional part of x.
Example:
>>> x = ti.Vector([-1.2, -0.7, 0.3, 1.2]) >>> ti.math.fract(x) [0.800000, 0.300000, 0.300000, 0.200000]
- taichi.math.inf#
A floating-point positive infinity. (For negative infinity, use -inf). Directly imported from the Python standard library math.
- taichi.math.inverse(mat)#
Calculate the inverse of a matrix.
This function is equivalent to the inverse function in GLSL.
- Parameters:
mat (
taichi.Matrix
) – The matrix of which to take the inverse. Supports only 2x2, 3x3 and 4x4 matrices.- Returns:
Inverse of the input matrix.
Example:
>>> m = ti.math.mat3([(1, 1, 0), (0, 1, 1), (0, 0, 1)]) >>> ti.math.inverse(m) [[1.000000, -1.000000, 1.000000], [0.000000, 1.000000, -1.000000], [0.000000, 0.000000, 1.000000]]
- taichi.math.isinf(x)#
Determines whether the parameter is positive or negative infinity, element-wise.
- Parameters:
x (
primitive_types
,taichi.Matrix
) – The input.
Example
>>> x = ti.math.vec4(inf, -inf, nan, 1) >>> ti.math.isinf(x) [1, 1, 0, 0]
- Returns:
For each element i of the result, returns 1 if x[i] is posititve or negative floating point infinity and 0 otherwise.
- taichi.math.isnan(x)#
Determines whether the parameter is a number, element-wise.
- Parameters:
x (
primitive_types
,taichi.Matrix
) – The input.
Example
>>> x = ti.math.vec4(nan, -nan, inf, 1) >>> ti.math.isnan(x) [1, 1, 0, 0]
- Returns:
For each element i of the result, returns 1 if x[i] is posititve or negative floating point NaN (Not a Number) and 0 otherwise.
- taichi.math.ivec2#
2D signed int vector type.
- taichi.math.ivec3#
3D signed int vector type.
- taichi.math.ivec4#
3D signed int vector type.
- taichi.math.length(x)#
Calculate the length of a vector.
This function is equivalent to the length function in GLSL. :param x: The vector of which to calculate the length. :type x:
Matrix
- Returns:
The Euclidean norm of the vector.
Example:
>>> x = ti.Vector([1, 1, 1]) >>> ti.math.length(x) 1.732051
- taichi.math.log(x)#
Compute the natural logarithm, element-wise.
The natural logarithm log is the inverse of the exponential function, so that log(exp(x)) = x. The natural logarithm is logarithm in base e.
- Parameters:
x (Union[
primitive_types
,Matrix
]) – Input scalar or matrix.- Returns:
The natural logarithm of x, element-wise.
Example:
>>> @ti.kernel >>> def test(): >>> x = ti.Vector([-1.0, 0.0, 1.0]) >>> y = ti.log(x) >>> print(y) >>> >>> test() [-nan, -inf, 0.000000]
- taichi.math.log2(x)#
Return the base 2 logarithm of x, so that if \(2^y=x\), then \(y=\log2(x)\).
This is equivalent to the log2 function is GLSL.
- Parameters:
x (
Matrix
) – The input value.- Returns:
The base 2 logarithm of x.
Example:
>>> x = ti.Vector([1., 2., 3.]) >>> ti.math.log2(x) [0.000000, 1.000000, 1.584962]
- taichi.math.mat2#
2x2 floating matrix type.
- taichi.math.mat3#
3x3 floating matrix type.
- taichi.math.mat4#
4x4 floating matrix type.
- taichi.math.max(*args)#
Compute the maximum of the arguments, element-wise.
This function takes no effect on a single argument, even it’s array-like. When there are both scalar and matrix arguments in args, the matrices must have the same shape, and scalars will be broadcasted to the same shape as the matrix.
- Parameters:
args – (List[
primitive_types
,Matrix
]): The input.- Returns:
Maximum of the inputs.
Example:
>>> @ti.kernel >>> def foo(): >>> x = ti.Vector([0, 1, 2]) >>> y = ti.Vector([3, 4, 5]) >>> z = ti.max(x, y, 4) >>> print(z) # [4, 4, 5]
- taichi.math.min(*args)#
Compute the minimum of the arguments, element-wise.
This function takes no effect on a single argument, even it’s array-like. When there are both scalar and matrix arguments in args, the matrices must have the same shape, and scalars will be broadcasted to the same shape as the matrix.
- Parameters:
args – (List[
primitive_types
,Matrix
]): The input.- Returns:
Minimum of the inputs.
Example:
>>> @ti.kernel >>> def foo(): >>> x = ti.Vector([0, 1, 2]) >>> y = ti.Vector([3, 4, 5]) >>> z = ti.min(x, y, 1) >>> print(z) # [0, 1, 1]
- taichi.math.mix(x, y, a)#
Performs a linear interpolation between x and y using a to weight between them. The return value is computed as x * (1 - a) + a * y.
The arguments can be scalars or
Matrix
, as long as the operation can be performed.This function is similar to the mix function in GLSL.
- Parameters:
x (
primitive_types
,Matrix
) – Specify the start of the range in which to interpolate.y (
primitive_types
,Matrix
) – Specify the end of the range in which to interpolate.a (
primitive_types
,Matrix
) – Specify the weight to use to interpolate between x and y.
- Returns:
- The linear
interpolation of x and y by weight a.
- Return type:
Example:
>>> x = ti.Vector([1, 1, 1]) >>> y = ti.Vector([2, 2, 2]) >>> a = ti.Vector([1, 0, 0]) >>> ti.math.mix(x, y, a) [2.000000, 1.000000, 1.000000] >>> x = ti.Matrix([[1, 2], [2, 3]], ti.f32) >>> y = ti.Matrix([[3, 5], [4, 5]], ti.f32) >>> a = 0.5 >>> ti.math.mix(x, y, a) [[2.000000, 3.500000], [3.000000, 4.000000]]
- taichi.math.mod(x, y)#
Compute value of one parameter modulo another, element-wise.
- Parameters:
x (
primitive_types
,Matrix
) – The first input.y (
primitive_types
,Matrix
) – The second input.
- Returns:
the value of x modulo y. This is computed as x - y * floor(x/y).
Example:
>>> x = ti.Vector([-0.5, 0.5, 1.]) >>> y = 1.0 >>> ti.math.mod(x, y) [0.500000, 0.500000, 0.000000]
- taichi.math.nan#
A floating-point “not a number” (NaN) value. Directly imported from the Python standard library math
- taichi.math.normalize(v)#
Calculates the unit vector in the same direction as the original vector v.
It’s equivalent to the normalize function is GLSL.
- Parameters:
x (
Matrix
) – The vector to normalize.- Returns:
The normalized vector \(v/|v|\).
Example:
>>> v = ti.Vector([1, 2, 3]) >>> ti.math.normalize(v) [0.267261, 0.534522, 0.801784]
- taichi.math.pi#
The mathematical constant π = 3.141592…. Directly imported from the Python standard library math.
- taichi.math.popcnt(x)#
- taichi.math.pow(base, exponent)#
First array elements raised to second array elements \({base}^{exponent}\), element-wise.
The result type of two scalar operands is determined as follows: - If the exponent is an integral value, then the result type takes the type of the base. - Otherwise, the result type follows
[Implicit type casting in binary operations](https://docs.taichi-lang.org/docs/type#implicit-type-casting-in-binary-operations).
With the above rules, an integral value raised to a negative integral value cannot have a feasible type. Therefore, an exception will be raised if debug mode or optimization passes are on; otherwise 1 will be returned.
In the following situations, the result is undefined: - A negative value raised to a non-integral value. - A zero value raised to a non-positive value.
- Parameters:
base (Union[
primitive_types
,Matrix
]) – The bases.exponent (Union[
primitive_types
,Matrix
]) – The exponents.
- Returns:
base raised to exponent. This is a scalar if both base and exponent are scalars.
Example:
>>> @ti.kernel >>> def test(): >>> x = ti.Matrix([-2.0, 2.0]) >>> y = -3 >>> z = ti.pow(x, y) >>> print(z) >>> >>> test() [-0.125000, 0.125000]
- taichi.math.radians(x)#
Convert x in degrees to radians, element-wise.
- Parameters:
x (
Matrix
) – The input angle in degrees.- Returns:
angle in radians.
Example:
>>> x = ti.Vector([-90., 45., 90.]) >>> ti.math.radians(x) / pi [-0.500000, 0.250000, 0.500000]
- taichi.math.reflect(x, n)#
Calculate the reflection direction for an incident vector.
For a given incident vector x and surface normal n this function returns the reflection direction calculated as \(x - 2.0 * dot(x, n) * n\).
This is equivalent to the reflect function is GLSL.
n should be normalized in order to achieve the desired result.
- Parameters:
- Returns:
The reflected vector.
Example:
>>> x = ti.Vector([1., 2., 3.]) >>> n = ti.Vector([0., 1., 0.]) >>> ti.math.reflect(x, n) [1.000000, -2.000000, 3.000000]
- taichi.math.refract(x, n, eta)#
Calculate the refraction direction for an incident vector.
This function is equivalent to the refract function in GLSL.
- Parameters:
- Returns:
The refraction direction vector.
- Return type:
Example:
>>> x = ti.Vector([1., 1., 1.]) >>> y = ti.Vector([0, 1., 0]) >>> ti.math.refract(x, y, 2.0) [2.000000, -1.000000, 2.000000]
- taichi.math.rot_by_axis(axis, ang)#
Returns the 4x4 matrix representation of a 3d rotation with given axis axis and angle ang.
- Parameters:
axis (vec3) – rotation axis
ang (float) – angle in radians unit
- Returns:
rotation matrix
- Return type:
- taichi.math.rot_yaw_pitch_roll(yaw, pitch, roll)#
Returns a 4x4 homogeneous rotation matrix representing the 3d rotation with Euler angles (rotate with Y axis first, X axis second, Z axis third).
- Parameters:
yaw (float) – yaw angle in radians unit
pitch (float) – pitch angle in radians unit
roll (float) – roll angle in radians unit
- Returns:
rotation matrix
- Return type:
- taichi.math.rotation2d(ang)#
Returns the matrix representation of a 2d counter-clockwise rotation, given the angle of rotation.
- Parameters:
ang (float) – Angle of rotation in radians.
- Returns:
2x2 rotation matrix.
- Return type:
Example:
>>>ti.math.rotation2d(ti.math.radians(30)) [[0.866025, -0.500000], [0.500000, 0.866025]]
- taichi.math.rotation3d(ang_x, ang_y, ang_z)#
Returns a 4x4 homogeneous rotation matrix representing the 3d rotation with Euler angles (rotate with Y axis first, X axis second, Z axis third).
- Parameters:
ang_x (float) – angle in radians unit around X axis
ang_y (float) – angle in radians unit around Y axis
ang_z (float) – angle in radians unit around Z axis
- Returns:
rotation matrix
- Return type:
Example
>>> ti.math.rotation3d(0.52, -0.785, 1.046) [[ 0.05048351 -0.61339645 -0.78816002 0. ] [ 0.65833154 0.61388511 -0.4355969 0. ] [ 0.75103329 -0.49688014 0.4348093 0. ] [ 0. 0. 0. 1. ]]
- taichi.math.round(x, dtype=None)#
Round to the nearest integer, element-wise.
- Parameters:
x (Union[
primitive_types
,Matrix
]) – A scalar or a matrix.dtype – (
primitive_types
): the returned type, default to None. If set to None the retuned value will have the same type with x.
- Returns:
The nearest integer of x, with return value type dtype.
Example:
>>> @ti.kernel >>> def test(): >>> x = ti.Vector([-1.5, 1.2, 2.7]) >>> print(ti.round(x)) [-2., 1., 3.]
- taichi.math.scale(sx, sy, sz)#
Constructs a scale Matrix with shape (4, 4).
- Parameters:
sx (float) – scale x.
sy (float) – scale y.
sz (float) – scale z.
- Returns:
scale matrix.
- Return type:
Example:
>>> ti.math.scale(1, 2, 3) [[ 1. 0. 0. 0.] [ 0. 2. 0. 0.] [ 0. 0. 3. 0.] [ 0. 0. 0. 1.]]
- taichi.math.sign(x)#
Extract the sign of the parameter, element-wise.
- Parameters:
x (
primitive_types
,Matrix
) – The input value.- Returns:
-1.0 if x is less than 0.0, 0.0 if x is equal to 0.0, and +1.0 if x is greater than 0.0.
Example:
>>> x = ti.Vector([-1.0, 0.0, 1.0]) >>> ti.math.sign(x) [-1.000000, 0.000000, 1.000000]
- taichi.math.sin(x)#
Trigonometric sine, element-wise.
- Parameters:
x (Union[
primitive_types
,Matrix
]) – Angle, in radians.- Returns:
The sine of each element of x.
Example:
>>> from math import pi >>> x = ti.Matrix([-pi/2., 0, pi/2.]) >>> ti.sin(x) [-1., 0., 1.]
- taichi.math.smoothstep(edge0, edge1, x)#
Performs smooth Hermite interpolation between 0 and 1 when edge0 < x < edge1, element-wise.
The arguments can be scalars or
Matrix
, as long as they can be broadcasted to a common shape.This function is equivalent to the smoothstep in GLSL.
- Parameters:
edge0 (
primitive_types
,Matrix
) – Specifies the value of the lower edge of the Hermite function.edge1 (
primitive_types
,Matrix
) – Specifies the value of the upper edge of the Hermite function.x (
primitive_types
,Matrix
) – Specifies the source value for interpolation.
- Returns:
The smoothly interpolated value.
Example:
>>> edge0 = ti.Vector([0, 1, 2]) >>> edge1 = 1 >>> x = ti.Vector([0.5, 1.5, 2.5]) >>> ti.math.smoothstep(edge0, edge1, x) [0.500000, 1.000000, 0.000000]
- taichi.math.sqrt(x)#
Return the non-negative square-root of a scalar or a matrix, element wise. If x < 0 an exception is raised.
- Parameters:
x (Union[
primitive_types
,Matrix
]) – The scalar or matrix whose square-roots are required.- Returns:
The square-root y so that y >= 0 and y^2 = x. y has the same type as x.
Example:
>>> x = ti.Matrix([1., 4., 9.]) >>> y = ti.sqrt(x) >>> y [1.0, 2.0, 3.0]
- taichi.math.step(edge, x)#
Generate a step function by comparing two values, element-wise.
step generates a step function by comparing x to edge. For element i of the return value, 0.0 is returned if x[i] < edge[i], and 1.0 is returned otherwise.
The two arguments can be scalars or
Matrix
, as long as they can be broadcasted to a common shape.- Parameters:
edge (
primitive_types
,Matrix
) – Specify the location of the edge of the step function.x (
primitive_types
,Matrix
) – Specify the value to be used to generate the step function.
- Returns:
The return value is computed as x >= edge, with type promoted.
Example:
>>> x = ti.Matrix([[0, 1], [2, 3]], ti.f32) >>> y = 1 >>> ti.math.step(x, y) [[1.000000, 1.000000], [0.000000, 0.000000]]
- taichi.math.tan(x)#
Trigonometric tangent function, element-wise.
Equivalent to ti.sin(x)/ti.cos(x) element-wise.
- Parameters:
x (Union[
primitive_types
,Matrix
]) – Input scalar or matrix.- Returns:
The tangent values of x.
Example:
>>> from math import pi >>> @ti.kernel >>> def test(): >>> x = ti.Matrix([-pi, pi/2, pi]) >>> y = ti.tan(x) >>> print(y) >>> >>> test() [-0.0, -22877334.0, 0.0]
- taichi.math.tanh(x)#
Compute the hyperbolic tangent of x, element-wise.
- Parameters:
x (Union[
primitive_types
,Matrix
]) – Input scalar or matrix.- Returns:
The corresponding hyperbolic tangent values.
Example:
>>> @ti.kernel >>> def test(): >>> x = ti.Matrix([-1.0, 0.0, 1.0]) >>> y = ti.tanh(x) >>> print(y) >>> >>> test() [-0.761594, 0.000000, 0.761594]
- taichi.math.translate(dx, dy, dz)#
Constructs a translation Matrix with shape (4, 4).
- Parameters:
dx (float) – delta x.
dy (float) – delta y.
dz (float) – delta z.
- Returns:
translation matrix.
- Return type:
Example:
>>> ti.math.translate(1, 2, 3) [[ 1. 0. 0. 1.] [ 0. 1. 0. 2.] [ 0. 0. 1. 3.] [ 0. 0. 0. 1.]]
- taichi.math.uvec2#
2D unsigned int vector type.
- taichi.math.uvec3#
3D unsigned int vector type.
- taichi.math.uvec4#
4D unsigned int vector type.
- taichi.math.vdir(ang)#
Returns the 2d unit vector with argument equals ang.
x (
primitive_types
): The input angle in radians.Example
>>> x = pi / 2 >>> ti.math.vdir(x) [0, 1]
- Returns:
a 2d vector with argument equals ang.
- taichi.math.vec2#
2D floating vector type.
- taichi.math.vec3#
3D floating vector type.
- taichi.math.vec4#
4D floating vector type.